Isolation and Synthesis of the First Natural 6-Hydroximino 4-en-3-one- Steroids from the Sponges Cinachyrella spp.

Jaime Rodríguez, ${ }^{8}$ Lucia Nuñez, ${ }^{\text {§ }}$ Solange Peixinho, ${ }^{\ddagger}$ and Carlos Jiménez ${ }^{\text {* }}$
${ }^{\text {\$Departamento de Qulmica Fundamental e Industrial, Facultade de Ciencias, Universidade da Coruña, }}$ A Coruña. 15071, Spain. FAX 34-81-135641. E-mail: carlosjg@udc.es
\ddagger Departamento de Zoologia, Instituto de Biologia, Universidade Federal de Bahia, Campus Universitario de Ondina 40170-290, Salvador, Bahia, Brazil.

Abstract

Two new 6-hydroximino-4-en-3-one steroids: ($24 R, 6 E$)-24-ethylcholest-6-hydroximino-4-en-3-one (1) and ($6 E$) cholest-6-hydroximino-4-en-3-one (2), accompanied by the known cholest-4-en-3-one were isolated from a mixture of two morphospecies of the sponge Cinachyrella (C. alloclada and C. apion). Use of spectroscopic methods (NMR and MS) was key to establish their structures which were confirmed by synthesis. Described in this report are the first hydroximino steroids derived from a natural source. © 1997 Elsevier Science Ltd. All rights reserved.

A great number of steroids have been isolated from marine sponges having a very unusual and interesting structures. As far as we know, yet not any marine steroid with an oxime group has so far been reported in the literature. ${ }^{1}$

Steroids from sponges belonging to the Tetillidae family (subclass Tetractinomorpha, order Spirophorida) have been little investigated to date. ${ }^{2}$ In the course of our chemotaxomic investigations to differentiate two morphospecies of the Cinachyrella (C. alloclada versus C. apion), ${ }^{3}$ we were able to isolate the first natural 6-hydroximino-3-oxo-4-en steroids: ($24 R, 6 E$)-24-ethylcholest-6-hydroximino-4-en-3-one (1) and cholest-6-hydroximino-4-en-3-one (2), along with cholest-4-en-3-one ${ }^{4}$. Their structures were deduced by extensive use of 1D and 2D-NMR, FABMS and HREIMS, and corroborated by synthesis of 1 .

$3 \mathrm{R}=\mathrm{OH}$

The MeOH extract of a specimens mixture $(60.5 \mathrm{~g}$, wet) of the two morphospecies (collected at the Pituba beach in Salvador de Bahia, Brazil) were partitioned into n-hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n - BuOH . The hexane fraction (4.5 g) was fractionated by SiO_{2} gel flash chromatography eluting in a gradient mode with hexane/AcOEt mixtures. The hexane/AcOEt (9:1) fraction gave, after repeated chromatographic separations on SiO_{2} gel column and normal phase HPLC, 565 mg of 4-cholesten-3-one as the major metabolite present in the sponge. ${ }^{5}$ The fraction eluted with hexane/AcOEt (8:2) was further submitted to several HPLC separations (normal phase in a μ-Porasil column, hexane/ $\mathrm{AcOEt}(8: 2)$ and then reversed phase ($1 \mathrm{ml} / \mathrm{min}$., $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 9: 1 \mathrm{in}$ μ-Bondapack C 18 and C 8 columns)) to give 6 mg of compound $1(\mathrm{C} 8$ column, $\mathrm{rt} .=69.3 \mathrm{~min}$.) and 2 mg of compound 2 (C 8 column, $\mathrm{rt} .=53 \mathrm{~min}$.).

The molecular formula of 1 was established as $\mathrm{C}_{2} 9 \mathrm{H}_{47} \mathrm{NO}_{2}$ by HREIMS ($m / z 441.3604, \Delta 0.3$ mmu of calcd). Positive test on TLC to an 0.5% aqueous cupric chloride solution pointing to a nitrogenous metabolite possessing a hydroximino group. A further indication of an oxime moiety was the presence of bands at $3340(\mathrm{NO}-\mathrm{H})$ and $1647(\mathrm{C}=\mathrm{N}-\mathrm{O}) \mathrm{cm}^{-1}$ in the IR spectrum.

A combination of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT-135 NMR data suggested a C_{29} steroid which also showed the presence of a ketone ($\delta_{\mathrm{C}} 201.0$), a trisubstituted double bond $\left[\delta_{\mathrm{H}} 6.43(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 122.6\right.$ (d) and $162.3(\mathrm{~s})$], an OH group [$\delta_{\mathrm{H}} 9.88(1 \mathrm{H}, \mathrm{bs})$, interchanged with $\mathrm{D}_{2} \mathrm{O}$], a quaternary carbon [$\delta_{\mathrm{C}} 156.0(\mathrm{~s})$] and two diasterotopic protons at $\delta_{\mathrm{H}} 3.42(1 \mathrm{H}, \mathrm{dd}, J=16.0$ and 4.7 Hz$)$ and $1.55(1 \mathrm{H}, \mathrm{m})$. In order to overcome a great deal of overlapping signals in the $\delta_{H} 2.00-0.70$ region, $\mathrm{HMQC},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC experiments were made. Careful analysis of COSY and HMQC data for 1 revealed the two

Figure 1. Selected HMBC correlations of 1. diasterotopic protons ($\mathrm{H} 7 \alpha$ and β) showing correlations with a ${ }^{13} \mathrm{C}$ signal at $\delta_{\mathrm{c}} 29.6$ (t). The long-range heteronuclear correlations (HMBC, figure 1) between pairs $\delta_{\mathrm{H}} 6.43(\mathrm{H} 4)$ and $\delta_{\mathrm{C}} 201.0(\mathrm{C} 3), \delta_{\mathrm{H}} 6.43(\mathrm{H} 4)$ and δ_{c} $156.0(\mathrm{C} 6), \delta_{\mathrm{H}} 3.42(\mathrm{H} 7 \beta)$ and $\delta_{\mathrm{C}} 162.3(\mathrm{C} 5), \delta_{\mathrm{H}} 1.55$ ($\mathrm{H} 7 \alpha$) and $\delta_{\mathrm{C}} 156.0$ (C6), strongly suggested the presence of a 6-hydroximino-4-en-3-one group in this C_{29} steroid. The strong NOESY correlation between $\mathrm{H}-7 \alpha$ at $\delta_{\mathrm{H}} 1.55$ and the OH proton and the downfield shift of the $\mathrm{H}-7 \beta$ due to the proximity of the oxime OH demonstrate the E geometry in the oxime group. The remaining proton and carbon chemical shifts were coincident with those of a 24 -ethylcholesterol structure and allowed us to identify compound 1 as $(24 R, 6 E)$-24ethylcholest -6-hydroximino-4-en-3-one. ${ }^{6}$

Based on the above results and to confirm the presence of the hydroximino group (during the separation process we noticed an isomerization $E-Z$ in the oxime group), ${ }^{7}$ we decided to synthesize 1 for its full characterization. Our retrosynthetic strategy was built on the methodology developed by Holland ${ }^{8}$ group who complete the synthesis of 3. As shown in Scheme $1, \beta$-sitoesterol was protected, epoxydized, and oxidized to give an $\alpha-\beta$ unsaturated ketone. The treatment of this compound with hydroxylamine hydrochloride afforded a key precursor of the ($6 E$)-stigma- 6 -hydroximino- 4 -en- 3β-ol. Finally, MnO_{2} oxidation gave 1 which showed identical chromatographic (TLC and rt in HPLC) and spectroscopic data as the natural compound.

Compound 2 was isolated in small amount. Its molecular ion at $m / z 413$ in the EIMS, the NMR data (Table 1) and the comparison to those of compound 1 allowed us to identify compound 2 as ($6 E$)-cholest-6-hydroximino-4-en-3-one. ${ }^{9}$

Although 6-hydroximino-4-en-3-one steroids, which constitute a new class of steroid, have been recently synthesized, compounds 1 and 2 are the first examples occurring in nature. This group of steroids were reported to show a high affinity for human placental aromatase, and function as competitive inhibitor of this enzyme. ${ }^{8}$ Several 4-cholesten-3, 6-diones have been isolated from marine sponges, including species belonging to the Cinachyrella genus (formerly named Cinachyra), such as C. tarantina where is present $(24 R)$-ethylcholest-4-en- 3,6 -dione and cholest-4-en- 3,6 -dione. ${ }^{10}$ The present species of Cinachyrella has not only the ability to oxidize the $\mathrm{C}-3$ and $\mathrm{C}-6$ positions in the steroid but also to obtain selectively the hydroximino group at C-6.

Compound 1 did not show any cytotoxic activity against several tumor cells (P-388, A-549, HT29, MEL-28).

Scheme 1. i $\mathrm{Ac}_{2} \mathrm{O}$, Py; ii MCPBA/CH2Cl2; iii $\mathrm{CrO}_{3} \mathrm{H}_{2} \mathrm{O}$; iv $\mathrm{SOCl}_{2} / \mathrm{Py}$; v $\mathrm{KOH} / \mathrm{MeOH}$ vi $\mathrm{NH}_{2} \mathrm{OH}-\mathrm{HCl} ; \mathrm{vii}_{\mathrm{MnO}}^{2} 2\left(\mathrm{CHCl}_{3}\right.$

1			2	
c	$\delta_{\text {c mill }}$	8 mum(in (in)	Cermil	
1	34.8 t	$2.05 \mathrm{~m} / 1.75 \mathrm{~m}$	34.8 t	2.05 m
2	33.61	2.53 m	33.7 t	2.54 m
3	201.0 s		200.8 s	
4	122.6 d	6.43 s	122.7 d	6.41 s
5	162.3 s		162.1 s	
6	156.0 s		156.2 s	
7	29.6 t	(β) $3.42 \mathrm{dd}(16.0,4.7) /(\alpha) 1.55 \mathrm{~m}$	29.6 t	(β) 3.41 dd ($16.0,4.7$)
8	32.7 d	1.65 m	32.8 d	
9	51.2 d	1.15 m	51.3 d	
10	38.7 s		38.8 s	
11	20.8 t	1.55 m	20.8 t	
12	39.3 t	$2.05 \mathrm{~m} / 1.25 \mathrm{~m}$	39.3 t	
13	42.5 s		42.6 s	
14	56.6 s	1.18 m	56.6 s	
15	24.0 t	$1.70 \mathrm{~m} / 1.15 \mathrm{~m}$	24.0 t	
16	28.1 t	$1.90 \mathrm{~m} / 1.33 \mathrm{~m}$	28.1 t	
17	55.9 d	1.14 m	56.0 d	
18	12.0 q	0.70 s	11.9 q	0.70 s
19	16.6 q	1.13 s	16.6 q	1.21 s
20	36.2 d	1.35 m	35.7 d	
21	18.7 q	$0.93 \mathrm{~d}(6.3)$	18.6 q	0.90 d (6.3)
22	33.8 t		36.1 t	
23	26.4 d	1.18 m	23.8 t	
24	46.1 d	0.92 m	39.5 t	
25	29.0 q	1.65 m	28.0 q	
26	19.0 q	0.84 d (6.6)	22.8 q	0.90 d (6.6)
27	19.6 q	0.81 d (6.6)	22.5 q	0.84 d (6.6)
28	23.1 t	$1.22 \mathrm{~m} / 1.30 \mathrm{~m}$		
29	12.3 q	0.86 t		
OH		9.88 brs		9.71 brs

Table. ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ Chemical Shifts (ppm) for 1 and 2 in $\mathrm{Cl}_{3} \mathrm{CD}$.

Acknowledgments: This work was supported by Grant XUGA-10303A94 (Xunta de Galicia). We are grateful to BIOMAR S.A. for the pharmacological assays.

REFERENCES AND NOTES

1. Faulkner, D. J. Nat. Prod. Rep., 1996, 13, 75-125 and references therein.
2. Barnathan, G.; Miralles, J.; Njinkou, J. M.; Mangoni, A.; Fattorusso, F.; Debitus; C. Boury-Esnault, N.; Komprobost, J. M. Comp. Biochem. Physiol. 1992, 103B, 1043-1047.
3. Two morphospecies from Pituba Beach (Salvador) presented the same variation of external morphology and only few differences in spicular characters were found. C. alloclada have one size class of tetractines whereas C. apion have two raphids as microscleres.
4. In a second study we also detected the presence of these three compounds on individual specimens of Cinachyrella alloclada and C. apion collected at the same place.
5. Pouchert, C. J. and Behnke, J., The Aldrich Library of the ${ }^{13} \mathrm{C}$ and ${ }^{4} H$ NMR Spectra Ed. I. Spectrum 3, 578B, 1993. This compound was first encountered in the sponge Stelleta clarella: Sheikh, Y. M.; Djerassi, C. Tetrahedron, 1974, 30, 4095-4103.
6. 1: Amorphous white solid. $[\alpha]_{\mathrm{D}}=+99^{\circ}(c 0.065)$. UV $\lambda_{\max }: 271 \mathrm{~nm}$. IR $v_{\max }: 3880,2923,1647,1307,1131$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ see Table 1. HREIMS: $\mathrm{C}_{2}{ }^{2} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{~N}$ found 441.3604: calc. 441.3607. LREIMS m / z (\%): 441 (55), 424 (10), 398 (6), 300 (12), 188 (4), 169 (100), 174 (6), 125 (9). (+) FABMS, $m / z,(\%): 442$ ([M+H]*, 100).
7. This was deduced by the appearance of the signals at $\delta 6.13 \mathrm{ppm}(\mathrm{s})$ and $2.55(\mathrm{~m})$ assignable to $\mathrm{H}-4$ and $\mathrm{H}-7 \beta$ of the Z isomer. The conversion of (E)-cholest-4-en-6-hydroximino to its Z isomer in MeOH under irradiation is known: Suginome, H.; Ohshima, K.; Ohue, Y.; Ohki, T.; Senboku, H. J. Chem. Soc. Perkin Trans. 1, 1994, 3239-3249.
8. Holland, H. L.; Kumaresan, S.; Tan, L.; Njar, V. C. O. J. Chem. Soc. Perkin Trans. 1, 1992, 585-587.
9. 2: Amorphous white solid. $[\alpha]_{\mathrm{D}}=+136^{\circ}(c 0.225)$. UV $\lambda_{\max }: 271 \mathrm{~nm} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR see Table 1 . EIMS m / z (\%): 413 (14), 396 (30), 370 (80), 174 (45), 125 (70), 55 (100).
10. Aiello, A.; Fattorusso, E.; Magno, S.; Menna, M.; Pansini, M. J. Nat. Prod., 1993, 54, 281-285.
(Received in UK 20 December 1996; revised 22 January 1997; accepted 24 January 1997)
