

PII: S0040-4039(97)00163-9

Isolation and Synthesis of the First Natural 6-Hydroximino 4-en-3-one- Steroids from the Sponges *Cinachyrella* spp.

Jaime Rodríguez,[§] Lucia Nuñez,[§] Solange Peixinho,[‡] and Carlos Jiménez[§]*

[§]Departamento de Química Fundamental e Industrial, Facultade de Ciencias, Universidade da Coruña, A Coruña. 15071, Spain. FAX 34-81-135641. E-mail: carlosjg@udc.es [‡] Departamento de Zoologia, Instituto de Biologia, Universidade Federal de Bahia, Campus Universitario de Ondina, 40170-290, Salvador, Bahia, Brazil.

Abstract: Two new 6-hydroximino-4-en-3-one steroids: (24R, 6E)-24-ethylcholest-6-hydroximino-4en-3-one (1) and (6E) cholest-6-hydroximino-4-en-3-one (2), accompanied by the known cholest-4-en-3-one were isolated from a mixture of two morphospecies of the sponge *Cinachyrella* (*C. alloclada* and *C. apion*). Use of spectroscopic methods (NMR and MS) was key to establish their structures which were confirmed by synthesis. Described in this report are the first hydroximino steroids derived from a natural source. © 1997 Elsevier Science Ltd. All rights reserved.

A great number of steroids have been isolated from marine sponges having a very unusual and interesting structures. As far as we know, yet not any marine steroid with an oxime group has so far been reported in the literature.¹

Steroids from sponges belonging to the Tetillidae family (subclass Tetractinomorpha, order Spirophorida) have been little investigated to date.² In the course of our chemotaxomic investigations to differentiate two morphospecies of the *Cinachyrella* (*C. alloclada* versus *C. apion*),³ we were able to isolate the first natural 6-hydroximino-3-oxo-4-en steroids: (24R, 6E)-24-ethylcholest-6-hydroximino-4-en-3-one (1) and cholest-6-hydroximino-4-en-3-one (2), along with cholest-4-en-3-one⁴. Their structures were deduced by extensive use of 1D and 2D-NMR, FABMS and HREIMS, and corroborated by synthesis of 1.

The MeOH extract of a specimens mixture (60.5 g, wet) of the two morphospecies (collected at the Pituba beach in Salvador de Bahia, Brazil) were partitioned into *n*-hexane, CH_2Cl_2 and *n*-BuOH. The hexane fraction (4.5 g) was fractionated by SiO₂ gel flash chromatography eluting in a gradient mode with hexane/AcOEt mixtures. The

hexane/AcOEt (9:1) fraction gave, after repeated chromatographic separations on SiO₂ gel column and normal phase HPLC, 565 mg of 4-cholesten-3-one as the major metabolite present in the sponge.⁵ The fraction eluted with hexane/AcOEt (8:2) was further submitted to several HPLC separations (normal phase in a μ -Porasil column, hexane/AcOEt (8:2) and then reversed phase (1 ml/min., MeOH/H₂O 9:1 in μ -Bondapack C18 and C8 columns)) to give 6 mg of compound 1 (C8 column, rt. = 69.3 min.) and 2 mg of compound 2 (C8 column, rt. = 53 min.).

The molecular formula of 1 was established as $C_{29}H_{47}NO_2$ by HREIMS (*m*/z 441.3604, Δ 0.3 mmu of calcd). Positive test on TLC to an 0.5 % aqueous cupric chloride solution pointing to a nitrogenous metabolite possessing a hydroximino group. A further indication of an oxime moiety was the presence of bands at 3340 (NO-H) and 1647 (C=N-O) cm⁻¹ in the IR spectrum.

A combination of ¹H, ¹³C and DEPT-135 NMR data suggested a C₂₉ steroid which also showed the presence of a ketone (δ_C 201.0), a trisubstituted double bond [δ_H 6.43 (1H, s); δ_C 122.6 (d) and 162.3 (s)], an OH group [δ_H 9.88 (1H, bs), interchanged with D₂O], a quaternary carbon [δ_C 156.0 (s)] and two diasterotopic protons at δ_H 3.42 (1H, dd, J = 16.0 and 4.7 Hz) and 1.55 (1H, m). In order to overcome a great deal of overlapping signals in the δ_H 2.00-0.70 region, HMQC, ¹H-¹H COSY and HMBC experiments were made. Careful analysis of COSY and HMOC data for 1 revealed the two

diasterotopic protons (H7 α and β) showing correlations with a ¹³C signal at δ_c 29.6 (t). The long-range heteronuclear correlations (HMBC, figure 1) between pairs δ_H 6.43 (H4) and δ_c 201.0 (C3), δ_H 6.43 (H4) and δ_c 156.0 (C6), δ_H 3.42 (H7 β) and δ_c 162.3 (C5), δ_H 1.55 (H7 α) and δ_c 156.0 (C6), strongly suggested the presence of a 6-hydroximino-4-en-3-one group in this C₂₉ steroid. The strong NOESY correlation between H-7 α at δ_H 1.55 and the OH proton and the downfield shift of the H-7 β due to the proximity of the oxime OH demonstrate

Figure 1. Selected HMBC correlations of 1.

the *E* geometry in the oxime group. The remaining proton and carbon chemical shifts were coincident with those of a 24-ethylcholesterol structure and allowed us to identify compound 1 as (24R, 6E)-24-ethylcholest -6-hydroximino-4-en-3-one.⁶

Based on the above results and to confirm the presence of the hydroximino group (during the separation process we noticed an isomerization E-Z in the oxime group),⁷ we decided to synthesize 1 for its full characterization. Our retrosynthetic strategy was built on the methodology developed by Holland⁸ group who complete the synthesis of 3. As shown in Scheme 1, β -sitoesterol was protected, epoxydized, and oxidized to give an α - β unsaturated ketone. The treatment of this compound with hydroxylamine hydrochloride afforded a key precursor of the (6*E*)-stigma-6-hydroximino-4-en-3 β -ol. Finally, MnO₂ oxidation gave 1 which showed identical chromatographic (TLC and rt in HPLC) and spectroscopic data as the natural compound.

Compound 2 was isolated in small amount. Its molecular ion at m/z 413 in the EIMS, the NMR data (Table 1) and the comparison to those of compound 1 allowed us to identify compound 2 as (6*E*)-cholest-6-hydroximino-4-en-3-one.⁹

Although 6-hydroximino-4-en-3-one steroids, which constitute a new class of steroid, have been recently synthesized, compounds 1 and 2 are the first examples occurring in nature. This group of steroids were reported to show a high affinity for human placental aromatase, and function as competitive inhibitor of this enzyme.⁸ Several 4-cholesten-3, 6-diones have been isolated from marine sponges, including species belonging to the *Cinachyrella* genus (formerly named *Cinachyra*), such as *C. tarantina* where is present (24*R*)-ethylcholest-4-en-3,6-dione and cholest-4-en-3,6-dione.¹⁰ The present species of *Cinachyrella* has not only the ability to oxidize the C-3 and C-6 positions in the steroid but also to obtain selectively the hydroximino group at C-6.

Compound 1 did not show any cytotoxic activity against several tumor cells (P-388, A-549, HT-29, MEL-28).

Scheme 1. i Ac₂O, Py; ii MCPBA/CH₂Cl₂; iii CrO₃/H₂O; iv SOCl₂/Py; v KOH/MeOH vi NH₂OH-HCl; vii MnO₂/CHCl₃

		1		2
C	δ_C mult	δ _H mult (J in Hz)	δ_C mult	δ _H mult (J in Hz)
1	34.8 t	2.05 m / 1.75 m	34.8 t	2.05 m
2	33.6 t	2.53 m	33.7 t	2.54 m
3	201.0 s		200.8 s	
4	122.6 d	6.43 s	122.7 d	6.41 s
2 3 4 5 6 7 8 9	162.3 s		162.1 s	
6	156.0 s		156.2 s	
7	29.6 t	(β) 3.42 dd (16.0, 4.7) / (α) 1.55 m	29.6 t	(β) 3.41 dd (16.0, 4.7)
8	32.7 d	1.65 m	32.8 d	
9	51.2 d	1.15 m	51.3 d	
10	38.7 s		38.8 s	
11	20.8 t	1.55 m	20.8 t	
12	39.3 t	2.05 m / 1.25 m	39.3 t	
13	42.5 s		42.6 s	
14	56.6 s	1.18 m	56.6 s	
15	24.0 t	1.70 m /1.15 m	24.0 t	
16	28.1 t	1.90 m / 1.33 m	28.1 t	
17	55.9 d	1.14 m	56.0 d	
18	12.0 q	0.70 s	11.9 q	0.70 s
19	16.6 q	1.13 s	16.6 q	1.21 s
20	36.2 d	1.35 m	35.7 d	
21	18.7 q	0.93 d (6.3)	18.6 q	0.90 d (6.3)
22	33.8 t		36.1 t	
23	26.4 d	1.18 m	23.8 t	
24	46.1 d	0.92 m	39.5 t	
25	29.0 q	1.65 m	28.0 q	
26	19.0 q	0.84 d (6.6)	22.8 q	0.90 d (6.6)
27	19.6 q	0.81 d (6.6)	22.5 q	0.84 d (6.6)
28	23.1 t	1.22 m / 1.30 m		
29	12.3 q	0.86 t		
ОН		9.88 brs		9.71 brs

Table. ¹³C (75 MHz) and ¹H-NMR (500 MHz) Chemical Shifts (ppm) for 1 and 2 in Cl₃CD.

Acknowledgments: This work was supported by Grant XUGA-10303A94 (Xunta de Galicia). We are grateful to BIOMAR S.A. for the pharmacological assays.

REFERENCES AND NOTES

- 1. Faulkner, D. J. Nat. Prod. Rep., 1996, 13, 75-125 and references therein.
- Barnathan, G.; Miralles, J.; Njinkou, J. M.; Mangoni, A.; Fattorusso, F.; Debitus; C. Boury-Esnault, N.; Kornprobost, J. M. Comp. Biochem. Physiol. 1992, 103B, 1043-1047.
- 3. Two morphospecies from Pituba Beach (Salvador) presented the same variation of external morphology and only few differences in spicular characters were found. *C. alloclada* have one size class of tetractines whereas *C. apion* have two raphids as microscleres.
- 4. In a second study we also detected the presence of these three compounds on individual specimens of *Cinachyrella* alloclada and *C. apion* collected at the same place.
- Pouchert, C. J. and Behnke, J., The Aldrich Library of the ¹³C and ¹H NMR Spectra Ed. I. Spectrum 3, 578B, 1993. This compound was first encountered in the sponge Stelleta clarella: Sheikh, Y. M.; Djerassi, C. Tetrahedron, 1974, 30, 4095-4103.
- 6. 1: Amorphous white solid. [α]_D = +99° (c 0.065). UV λ_{max}: 271 nm. IR v_{max}.: 3880, 2923, 1647, 1307, 1131 cm⁻¹. ¹H and ¹³C-NMR see Table 1. HREIMS: C₂₉H₄₇O₂N found 441.3604: calc. 441.3607. LREIMS m/z (%): 441 (55), 424 (10), 398 (6), 300 (12), 188 (4), 169 (100), 174 (6), 125 (9). (+) FABMS, m/z, (%): 442 ([M+H]*, 100).
- This was deduced by the appearance of the signals at δ 6.13 ppm (s) and 2.55 (m) assignable to H-4 and H-7β of the Z isomer. The conversion of (E)-cholest-4-en-6-hydroximino to its Z isomer in MeOH under irradiation is known: Suginome, H.; Ohshima, K.; Ohue, Y.; Ohki, T.; Senboku, H. J. Chem. Soc. Perkin Trans. 1, 1994, 3239-3249.
- 8. Holland, H. L.; Kumaresan, S.; Tan, L.; Njar, V. C. O. J. Chem. Soc. Perkin Trans. 1, 1992, 585-587.
- 9. 2: Amorphous white solid. $[\alpha]_D = +136^\circ$ (c 0.225). UV λ_{max} : 271 nm. ¹H and ¹³C-NMR see Table 1. EIMS *m/z* (%): 413 (14), 396 (30), 370 (80), 174 (45), 125 (70), 55 (100).
- 10. Aiello, A.; Fattorusso, E.; Magno, S.; Menna, M.; Pansini, M. J. Nat. Prod., 1993, 54, 281-285.

(Received in UK 20 December 1996; revised 22 January 1997; accepted 24 January 1997)